T.C. MUNZUR ÜNİVERSİTESİ Lisansüstü Eğitim Enstitüsü Müdürlüğü | COURSE IDENTIFICATION FORM | | | | | | | | | | |-----------------------------|-------------------|---|---|---------|------|-------------------------------------|------------------------------|--|--| | Course Code a
STRUCTURAL | 5042 | | Department of : CIVIL ENGINEERING / MASTER PROGRAMME | | | | | | | | Semester | Theoretic
Hour | Practice
Hour | Total
Hour | Credits | ECTS | Education
Language | Type: Compulsory
Elective | | | | Atumn/Spring | 3 | 0 | 3 | 3 | 5 | Turkish | Optional | | | | Prerequisite (s) | | | | | | | | | | | Instructor | | Assoc. Prof. Erkan POLAT | | | | Mail: erkanpolat@munzur.edu.tr Web: | | | | | Course Assistant | | Mail :
Web : | | | | | | | | | Groups / Classes | | | | | | | | | | | Course Aim | | To provide comprehensive knowledge of linear first-degree displacement methods for the statically indeterminate structural analysis and understand the limitations of these methods. | | | | | | | | | Course Goals | | Understand displacement methods for structural analysis and how they differ from force methods. Learn the limitations of first-degree linear elastic structural analysis. Understand how structural analysis programs work and their limitations. Acquire the ability to select and create appropriate elements for modeling a structure. Decide which properties of a structure can be neglected and which are important. Identify errors in structural models. | | | | | | | | | Course Learn
Profici | 0 | Students will learn the mathematical modeling of engineering problems. They will learn how to create and analyze the established model in software packages. They will learn to evaluate the results of the solved model in terms of accuracy. | | | | | | | | | Course Basic a
Cont | - | Course Notes McGuire Gallagher and Ziemian, Matrix Structural Analysis, 2nd Ed. John Wiley & Sons Inc, 2000 Kassimali, Matrix Analysis of Structures, CL-Engineering, 1999. | | | | | | | | | Methods of Gi | ive a Lecture | The course will be conducted in class. | | | | | | | | ## T.C. MUNZUR ÜNİVERSİTESİ Lisansüstü Eğitim Enstitüsü Müdürlüğü | Assessment Criteria | | | If Available, to
Sign (x) | General Average
Percentage (%) Rate | | | | | | |----------------------|---|----------------------------|------------------------------|--|--|--|--|--|--| | | | Midterm Exam | X | 30 | | | | | | | | | TVIIGUTIII EAGII | 11 | | | | | | | | | | Homework | | 20 | | | | | | | | | 1. Quiz | | | | | | | | | | | 2. Quiz | | | | | | | | | | | 3. Quiz | | | | | | | | | | | Oral Examination | | | | | | | | | | | Practice Examination | | | | | | | | | | | (Laboratory, Project etc.) | | | | | | | | | | | Final Exam | X | 50 | | | | | | | Semester Course Plan | | | | | | | | | | | Week | Subjects | | | | | | | | | | 1 | Introduction: Goals, Definitions, Coordinate Systems, Elements | | | | | | | | | | | Support Types, Timoshenko Beam Theory, Introduction to Computer Modeling | | | | | | | | | | 2 | Introduction to SAP2000 - Computer-Based Structural Analysis SAP2000 - Computer-Based Structural Analysis | | | | | | | | | | 2 | Review of Matrix Methods and Linear Algebra | | | | | | | | | | 3 | Springs: Displacement and Force Methods, Stiffness Matrix of Bar Elements | | | | | | | | | | 4 | Trusses - Manual Stiffness Method | | | | | | | | | | - | Overview of MathCad and MS Excel | | | | | | | | | | 5 | Trusses - Basic Stiffness Method | | | | | | | | | | | Boundary Conditions: Methods for 1s and 0s, Large Number Method | | | | | | | | | | 6 | Vector/Coordinate Transformations, Beams - Direct Stiffness Method Trusses - Example of Direct Stiffness Method | | | | | | | | | | | Midterm Exam | | | | | | | | | | 7 | Slope Deflection: Derivation of Stiffness Matrix for Beam Elements, Cantilever Forces | | | | | | | | | | o | Beams - Manual Stiffness Method | | | | | | | | | | 8 | Beams - Basic Stiffness Method Using Static and Compatibility Matrices | | | | | | | | | | 9 | Checking Solutions: Displacements at Joints, Support Settlement in Beams | | | | | | | | | | , | Frames - Basic Stiffness Method, Including/Excluding Axial Effects | | | | | | | | | | 10 | Frames - Direct Stiffness Method | | | | | | | | | | | Frames - Derivation of Global Stiffness Matrix | | | | | | | | | | 11 | Frames - Example of Direct Stiffness Method, Review | | | | | | | | | | | Buckling, Element End Degrees of Freedom Evample of Element End Degrees of Freedom | | | | | | | | | | 12 | Example of Element End Degrees of Freedom | | | | | | | | | | 13 | Shear Deformations, Symmetry, and Other Modeling Techniques | | | | | | | | | | 14 | Final Exam | | | | | | | | | ## T.C. MUNZUR ÜNİVERSİTESİ Lisansüstü Eğitim Enstitüsü Müdürlüğü